



Project "Determine the Outbreak Mechanisms and Development of a Surveillance Model for Multi-Drug Resistant Bacteria."

### Multi- drug resistant bacteria surveillance model

National Institute of Nutrition

Institute Pasteur in Nha Trang

Institute of Public Health in HCM city

Ha Noi, 25<sup>th</sup> August 2016

# Outputs of the Project

- Output 1: The widespread mechanisms of multi-drug resistant bacteria in Vietnam are clarified microbiologically, pharmacologically and anthropologically
- Output 2: A comprehensive monitoring system for antibiotics residues and antibiotic-resistant bacteria over the process from food production to intake is developed
- Output 3: Researchers and technical stuffs related to food safety monitoring at the member institutes are trained.

# Options for action to combat to threat of antibiotic resistance

Action 1 - Surveillance to track antimicrobial use and resistance in bacteria

Action 2 - Measures to ensure better use of antibiotics

Action 3 - Reducing antimicrobial use in animal husbandry

Action 4 - Infection prevention and control in health-care facilities

Action 5 - Fostering innovation to combat antimicrobial resistance

Action 6 - Political commitment to enable options for action



The evolving threat of antimicrobial resistance Options for action



# How did we develop a pilot surveillance model?

- WHO Recommended Surveillance Standards
- Sentinel surveillance, active, routin
- Maintaining surveillance standards: standardized technical systems, reporting methods
- Microbiological methods
  Consistent way and appropriate quality standard

### Multi- drug resistant bacteria surveillance model



# How did we develop a pilot surveillance model?

- WHO Recommended Surveillance Standards
- Sentinel surveillance, active, routin
- Maintaining surveillance standards: standardized technical systems, reporting methods
- Microbiological methods
  Consistent way and appropriate quality standard

#### Multi- drug resistant bacteria surveillance model



#### Development of a manual for surveillance



# How did we develop a pilot surveillance model?

- WHO Recommended Surveillance Standards
- Sentinel surveillance, active, routin
- Maintaining surveillance standards: standardized technical systems, reporting methods
- Microbiological methods
  Consistent way and appropriate quality standard

### **Microbiological analysis**



## Isolation protocol of ESBL-*E.coli* in food (ISO 16649-2)





## Pharmacological analysis

- Development HPLC method for ampicillin monitoring
  - Sample preparation protocol
  - Analytical protocol
- Validation of HPLC method
  - Validation method at NIN
  - Varification data at IPH and PINT
- Manual for antibiotic monitoring

## HPLC-FL determination of ampicillin in meat and sea food

| Parameters                | Pork       | Chicken    | Fish       | Shrimp      |
|---------------------------|------------|------------|------------|-------------|
| LOD                       | 0.7        | 1.0        | 1.2        | 0.4         |
| LOQ                       | 2.2        | 3.3        | 3.8        | 1.5         |
| RSD (%) at 50ppb<br>level | 8.0        | 9.7        | 8.8        | 8.4         |
| Recovery (n=10)           |            |            |            |             |
| 50 ppb                    | 95.1 ± 7.6 | 91.6 ± 8.9 | 89.5 ± 7.8 | 103.0 ± 8.7 |
| 100 ppb                   | 94.5 ± 2.9 | 91.3 ± 2.7 | 95.4 ± 2.3 | 93.0 ± 1.8  |
| 1000 ppb                  | 92.2 ± 2.4 | 94.1 ± 2.5 | 94.2 ± 5.1 | 92.8 ± 2.7  |

#### Table 1: Validation parameters

### HPLC-FL determination of ampicillin in meat and sea food

Auto-Scaled Chromatogram



Figure 1. Chromatogram of 10ppb ampicillin standard



#### Auto-Scaled Chromatogram

Figure 2. Chromatogram of 32ppb spiked in chicken

# Microbiological result

#### Fig 3 Prevalence(%) of ESBL-producing *E. coli* by food in Ha Noi, 2014.6-2016.3



## <sup>Fig 4</sup> Prevalence(%) of ESBL-producing *E. coli* by food in Nha Trang, 2014.6-2016.3



#### Fig 5 Prevalence(%) of ESBL-producing *E. coli* by food in Ho Chi Minh city, 2014.6-2016.3



#### Fig 6: Prevalence(%) of ESBL-producing *E. coli* by food in each city in 2014.6-2016.3



## <sup>Fig 7</sup> Prevalence(%) of ESBL-producing *E. coli* by market in each city in 2014.6-2016.3



Pharmacological result 2014 -2016. Total sample: 972 Samples (+) Ampicillin: 12 (1.2%) Ampicillin Residue > MRL: 01 (0.1%)

## Result at NIN

Total sample: 324 Samples (+) Ampicillin: 07 \*2014:

Number of sample: 108

• Number of positive sample: 03, range from 1.49 – 5.49 ng/g

| Code     | Sample type | Sampling location | Concentration (ng/g) |
|----------|-------------|-------------------|----------------------|
| 14NRS092 | Shrimp      | Retail market     | 1.49                 |
| 14NWC110 | Chicken     | Whole sale market | 5.49                 |
| 14NRC123 | Chicken     | Retail market     | 3.33                 |

## Result at NIN

#### \*2015

- Number of sample analysed: 144
- Positive sample: 04, range from 1.8 9.1 ng/g

| Code     | Sample type | Sampling location | Concentration (ng/g) |
|----------|-------------|-------------------|----------------------|
| 15NRC50  | Chicken     | Retail market     | 9.1                  |
| 15NWS081 | Shrimp      | Whole sale market | 4.9                  |
| 15NWS080 | Shrimp      | Whole sale market | 1.8                  |
| 15NWS079 | Shrimp      | Whole sale market | 5.5                  |

\*2016 Number of sample: 72 Positive sample: 0

## **Result at PINT**

Total sample: 324 Samples (+) Ampicillin: 02

#### 2014

- Number of sample collected and analysed : 108
- Positive sample: 01 pork sample, super market, at 52.3 ng/g (> MRL: 50 ng/g)

#### 2015

- Sample analysed: 144
- Positive sample: 0

#### 2016

- Number of sample: 72
- Positive sample: 01 shrimp sample, super market (21.7 ppb)

## Result at IHPH

Total sample: 324

#### Samples (+) Ampicillin: 03

\*2014

- Number of sample:108
- Positive samples: 03, range 1.9 ng/g -18.23 ng/g
  - 1 pork sample/ Binh Dien: 1.9 ng/g
  - 1 fish sample/ Co-opmart: 4.86 ng/g
  - 1 pork sample/Ben Thanh : 18.23 ng/g

\*2015

- Sample analyzed: 144
- Positive sample: 0

\*2016:

- Number of sample: 72
- Positive sample: 0

# Findings

- Prevalence of ESBL producing *E.coli* was highest in chicken (55.6%-80%), followed by pork (55.6%-75.5%)
- Food collected at retail market contaminated ESBL producing *E.coli* more often than food collected in supermarket and wholesale market
- The prevalence of Ampicillin residue in food was low (1.2%)

## Conclusions

- The pilot model is appropriate to:
- ✓ Apply in AMR surveillance system
- ✓ Integrate in communicable disease surveillance system

## Recomendation

- Maintain a research network on AMR between Viet Nam and Japan, established by the project
- Maintain the monitoring system performed by NIN, PINT, IHPH but expand areas to 2-3 sites collecting sample /institute
- Sample expansion: add eggs, fish/shrimp/shellfish from cultivated sea farm, environmental samples (ex. cutting boards in retail shops to check cross-contamination, etc) and human feces.
- Target bacteria: we recommend monitoring other type of AMR bacteria, such as *Salmonella, Campylobacter, Enterococcus*, Colistine resistance bacteria etc.



# THANK YOU FOR YOUR ATTENTION